

## Gallium Nitride 28V, 5W, DC-6 GHz HEMT

Built using the SIGANTIC<sup>®</sup> process - A proprietary GaN-on-Silicon technology

### **Features**

- Broadband operation from DC-6 GHz
- 28V Operation
- Industry Standard Plastic Package
- High Drain Efficiency (>55%)
- Drop in Replacement for NPTB00004

## **Applications**

- Broadband General Purpose
- Defense Communications
- Land Mobile Radio
- Wireless Infrastructure
- ISM Applications
- VHF/UHF/L-Band Radar



| DC- | 6 ( | GHz |
|-----|-----|-----|
| 5   | 5W  | 1   |
| GaN | Η   | ЕМТ |



## **Product Description**

The NPTB00004A GaN HEMT is a wideband transistor optimized for DC-6 GHz operation. This device has been designed for CW, pulsed, and linear operation with output power levels to 5W (37 dBm) in an industry standard surface mount SOIC plastic package. At frequencies below 3GHz, the NPTB00004A is a drop in replacement for the NPTB00004.

| Symbol                                                         | Parameter                                                | Min                           | Тур  | Max | Units |
|----------------------------------------------------------------|----------------------------------------------------------|-------------------------------|------|-----|-------|
| G <sub>SS</sub>                                                | Small-signal Gain                                        | -                             | 16   | -   | dB    |
| P <sub>SAT</sub>                                               | Saturated Output Power                                   | -                             | 37.1 | -   | dBm   |
| η <sub>SAT</sub> Efficiency at Saturated Output Power - 63.7 - |                                                          | %                             |      |     |       |
| G <sub>P</sub>                                                 | G <sub>P</sub> Gain at P <sub>OUT</sub> = 4W 12.8 14.8 - |                               | dB   |     |       |
| η                                                              | Drain Efficiency at P <sub>OUT</sub> = 4W                | 45 57 - %                     |      | %   |       |
| V <sub>DS</sub>                                                | Drain Voltage - 28 -                                     |                               | V    |     |       |
| Ψ                                                              | Ruggedness: Output Mismatch, all phase angles            | VSWR = 15:1, No Device Damage |      |     |       |

### **RF Specifications (CW, 2.5 GHz):** $V_{DS} = 28V$ , $I_{DQ} = 50mA$ , $T_{C} = 25^{\circ}C$



#### **DC Specifications**: $T_C = 25^{\circ}C$

| Symbol              | Parameter                                                                                    | Min  | Тур  | Max  | Units |
|---------------------|----------------------------------------------------------------------------------------------|------|------|------|-------|
| Off Cha             | aracteristics                                                                                |      |      |      |       |
| I <sub>DLK</sub>    | Drain-Source Leakage Current<br>(V <sub>GS</sub> =-8V, V <sub>DS</sub> =100V)                | -    | -    | 2    | mA    |
| I <sub>GLK</sub>    | I <sub>GLK</sub> Gate-Source Leakage Current<br>(V <sub>GS</sub> =-8V, V <sub>DS</sub> =0V)  |      | -    | 1    | mA    |
| On Cha              | On Characteristics                                                                           |      |      |      |       |
| V <sub>T</sub>      | Gate Threshold Voltage $(V_{DS}=28V, I_{D}=2mA)$                                             | -2.5 | -1.6 | -0.5 | V     |
| V <sub>GSQ</sub>    | Gate Quiescent Voltage<br>(V <sub>DS</sub> =28V, I <sub>D</sub> =50mA)                       | -2.1 | -1.3 | -0.3 | V     |
| R <sub>on</sub>     | $\begin{array}{c} R_{ON} & On \ Resistance \\ (V_{DS} = 2V, \ I_{D} = 15mA) \end{array}$     |      | 1.6  | -    | Ω     |
| I <sub>D, MAX</sub> | Maximum Drain Current<br>(V <sub>DS</sub> =7V pulsed, 300µS pulse width,<br>0.2% Duty Cycle) | -    | 1.4  | -    | A     |

#### Thermal Resistance Specification:

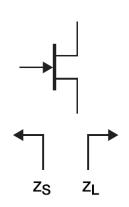
| Symbol              | Parameter                                                         | Тур | Units |
|---------------------|-------------------------------------------------------------------|-----|-------|
| $R_{	ext{	hetaJC}}$ | Thermal Resistance (Junction-to-Case),<br>T <sub>J</sub> = 180 °C | 15  | °C/W  |

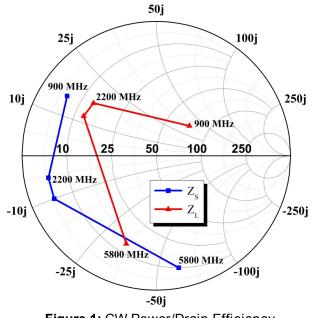
Junction Temperature  $(T_J)$  measured using IR Microscopy, Case Temperature  $(T_C)$  measured using a thermocouple embedded in heatsink.

#### **Absolute Maximum Ratings:** Not simultaneous, T<sub>C</sub> = 25°C unless otherwise noted

| Symbol           | Parameter                                               |          | Units |
|------------------|---------------------------------------------------------|----------|-------|
| V <sub>DS</sub>  | Drain-Source Voltage                                    |          | V     |
| V <sub>GS</sub>  | Gate-Source Voltage                                     | -10 to 3 | V     |
| l <sub>G</sub>   | I <sub>G</sub> Gate Current 4                           |          | mA    |
| Ρ <sub>T</sub>   | Total Device Power Dissipation (Derated above 25°C)11.6 |          | W     |
| T <sub>STG</sub> | Storage Temperature Range -65 to 150 °C                 |          | °C    |
| TJ               | T <sub>J</sub> Operating Junction Temperature 200       |          | °C    |
| HBM              | Human Body Model ESD Rating (per JESD22-A114)           | Class 1A |       |
| MSL              | Moisture sensitivity level (per IPC/JEDEC J-STD-020)    | MSL-3    |       |




## Load-Pull Data, Reference Plane at Device Leads


 $V_{\text{DS}}\text{=}28V,~I_{\text{DQ}}\text{=}50\text{mA},~T_{\text{C}}\text{=}25^{\circ}\text{C}$  unless otherwise noted

### **Optimum Source and Load Impedances:**

(CW Drain Efficiency and Output Power Tradeoff Impedance)

| Frequency<br>(MHz) | Ζ <sub>S</sub> (Ω) | Z <sub>L</sub> (Ω) | P <sub>SAT</sub> (W) | G <sub>ss</sub> (dB) | Drain Efficiency<br>@ P <sub>SAT</sub> (%) |
|--------------------|--------------------|--------------------|----------------------|----------------------|--------------------------------------------|
| 900                | 6.1 + j15          | 72 + j36           | 7.0                  | 23                   | 68                                         |
| 2200               | 5.0 - j5.0         | 14 + j17           | 6.7                  | 19                   | 66                                         |
| 2700               | 5.0 - j10          | 13 - j12           | 6.7                  | 17                   | 62                                         |
| 5800               | 10 - j60           | 14 - j34           | 6.5                  | 11                   | 52                                         |





### Figure 1: CW Power/Drain Efficiency Tradeoff Impedances, $Z_0=50\Omega$

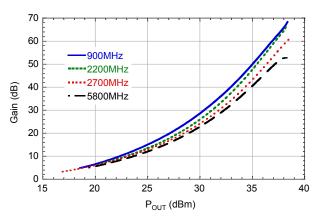



Figure 3: Efficiency vs. POUT

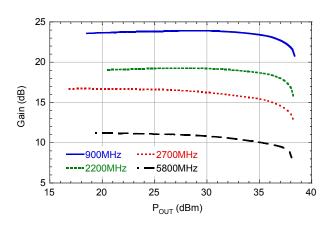



Figure 2: Gain vs. POUT





## 2.5 GHz Narrowband Circuit

(CW,  $V_{DS}$ =28V,  $I_{DQ}$ =50mA,  $T_{C}$ =25°C, unless otherwise noted)

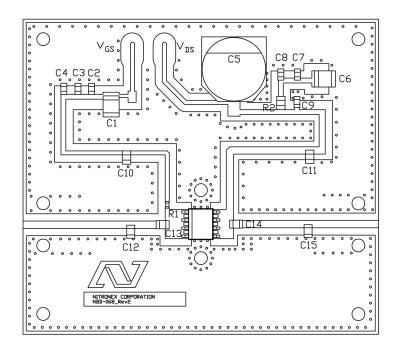
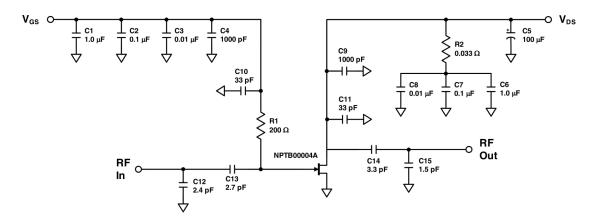



Figure 4: Component Placement of 2.5 GHz Narrowband Circuit for NPTB00004A


| Reference | Value                               | Manufacturer | Part Number        |
|-----------|-------------------------------------|--------------|--------------------|
| C1, C6    | 1µF                                 | AVX          | 12101C105KAT2A     |
| C2, C7    | 0.1µF                               | Murata       | GRM188R72A104KA35D |
| C3, C8    | 0.01µF                              | AVX          | 06031C103KAT2A     |
| C4, C9    | 1000pF                              | AVX          | 06031C102KAT2A     |
| C5        | 100µF                               | Panasonic    | ECE-V1JA101P       |
| C10, C11  | 33pF                                | ATC          | 600F330JT          |
| C12       | 2.4pF                               | ATC          | 600F2R4JT          |
| C13       | 2.7pF                               | ATC          | 600F2R7JT          |
| C14       | 3.3pF                               | ATC          | 600F3R3JT          |
| C15       | 1.5pF                               | ATC          | 600F1R5JT          |
| R1        | 200Ω                                | Panasonic    | ERJ-2GEJ201X       |
| R2        | 0.033Ω                              | Panasonic    | ERJ-6BWJR033W      |
| PCB       | RO4350, ε <sub>R</sub> =3.5, 0.020" | Rogers       | Nitronex NBD-068r2 |





## **Typical Performance in 2.5 GHz Narrowband Circuit**

(CW,  $V_{DS}$ =28V,  $I_{DQ}$ =50mA, f=2.5GHz,  $T_{C}$ =25°C, unless otherwise noted)



**Figure 5.** Electrical Schematic of 2.5 GHz Narrowband Circuit for NPTB00004A (For RF Tuning details see Component Placement Diagram Figure 4)

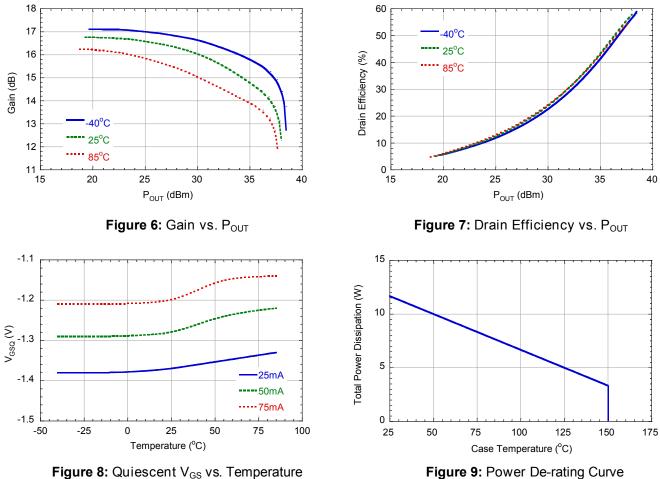
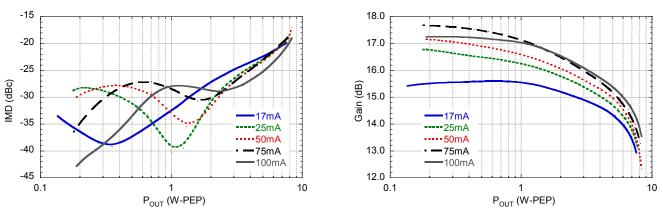




Figure 9: Power De-rating Curve  $(T_J = 200^{\circ}C, T_C > 25^{\circ}C)$ 



## **Typical Performance in 2.5 GHz Narrowband Circuit**

(CW, V\_{DS}=28V, I\_{DQ}=50mA, f=2.5GHz, T\_C=25^{\circ}C, unless otherwise noted)



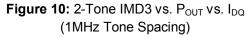
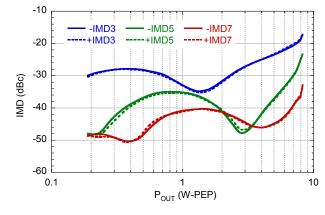
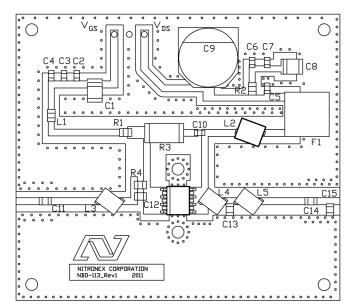



Figure 11: 2-Tone Gain vs. P<sub>OUT</sub> vs. I<sub>DQ</sub> (1MHz Tone Spacing)





Figure 12: 2-Tone IMD vs. P<sub>OUT</sub> (1MHz Tone Spacing)





## 100-800 MHz Broadband Circuit

(CW,  $V_{DS}$ =28V,  $I_{DQ}$ =50mA,  $T_{C}$ =25°C, unless otherwise noted)



### Figure 13: Component Placement of 100-800 MHz Broadband Circuit for NPTB00004A

| Reference   | Value                               | Manufacturer | Part Number        |
|-------------|-------------------------------------|--------------|--------------------|
| C1, C8      | 1µF                                 | AVX          | 12101C105KAT2A     |
| C2, C7      | 0.1µF                               | Murata       | GRM188R72A104KA35D |
| C3, C6, C10 | 0.01µF                              | AVX          | 06031C103KAT2A     |
| C4, C5,     | 1000pF                              | AVX          | 06031C102KAT2A     |
| C9          | 100µF                               | Panasonic    | ECE-V1JA101P       |
| C11, C14    | 240pF                               | ATC          | 600F241F           |
| C12         | 10pF                                | ATC          | 600F100B           |
| C13, C15    | 1.5pF                               | ATC          | 600F1R5JT          |
| F1          | Material 73                         | Fair-Rite    | 2673000801         |
| L1          | 100nH                               | Coilcraft    | 0805CS101X         |
| L2          | 100nH                               | Coilcraft    | 1812SMS-R10        |
| L3, L5      | 5nH                                 | Coilcraft    | A02TKLJ            |
| L4          | 2.5nH                               | Coilcraft    | A01TKLJ            |
| R1          | 300Ω                                | Panasonic    | ERJ-14YJ301U       |
| R2          | 0.33Ω                               | Susumu       | RL1220S-R33-F      |
| R3          | 470Ω                                | Stackpole    | RHC2512FT470R      |
| R4          | 10Ω                                 | Panasonic    | ERJ-14YJ100U       |
| PCB         | RO4350, ε <sub>R</sub> =3.5, 0.020" | Rogers       | Nitronex NBD-113r1 |





## Typical Performance in 100-800 MHz Broadband Circuit

(CW,  $V_{DS}$ =28V,  $I_{DQ}$ =50mA,  $T_{C}$ =25°C, unless otherwise noted)

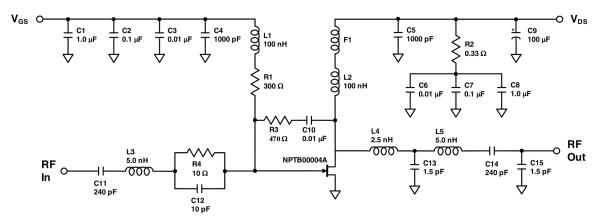
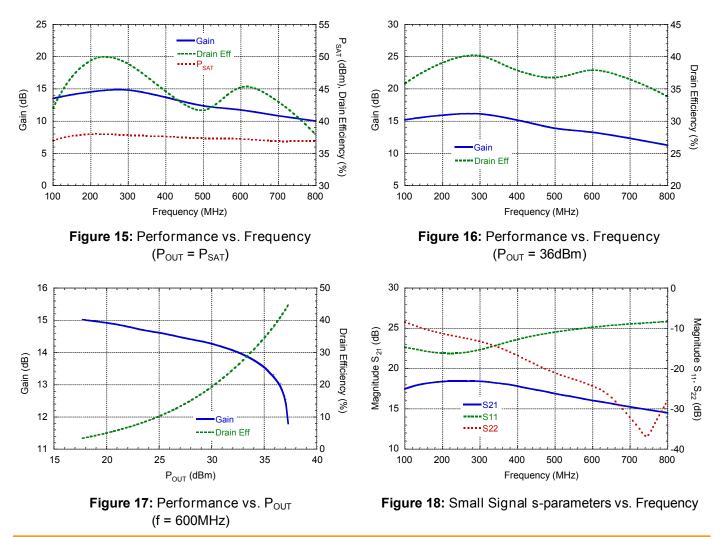




Figure 14. Electrical Schematic of 100-800 MHz Broadband Circuit for NPTB0004A (For RF Tuning details see Component Placement Diagram Figure 13)





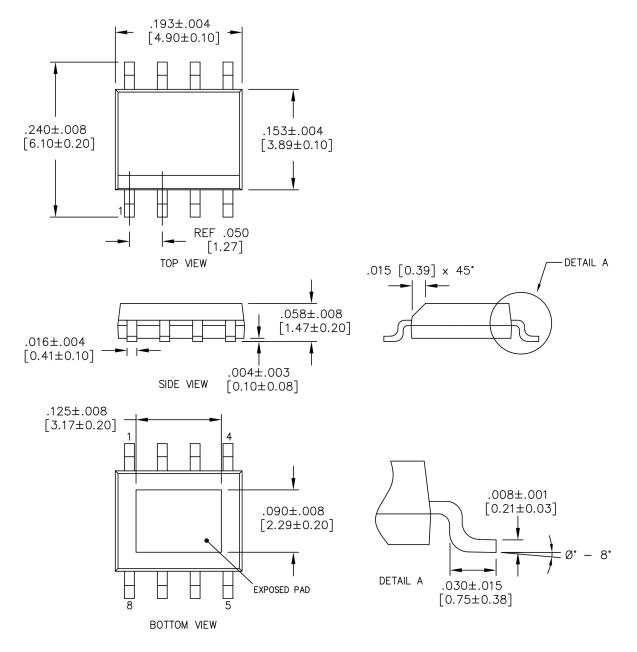



Figure 19 - SOIC-8NE Plastic Package Dimensions (all dimensions in inches [millimeters])

| Pin         | Function          |  |
|-------------|-------------------|--|
| 2, 3        | Gate — RF Input   |  |
| 6, 7        | Drain — RF Output |  |
| Exposed Pad | Source — Ground   |  |
| 1, 4, 5, 8  | No Connect*       |  |

\* All No Connect pins may be left floating or grounded



Nitronex, LLC

2305 Presidential Drive Durham, NC 27703 USA +1.919.807.9100 (telephone) +1.919.807.9200 (fax) info@nitronex.com www.nitronex.com

#### **Additional Information**

This part is lead-free and is compliant with the RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

#### **Important Notice**

- Nitronex, LLC reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Nitronex terms and conditions of sale supplied at the time of order acknowledgment. The latest information from Nitronex can be found either by calling Nitronex at 1-919-807-9100 or visiting our website at www.nitronex.com.
- Nitronex warrants performance of its packaged semiconductor or die to the specifications applicable at the time of sale in accordance with Nitronex standard warranty. Testing and other quality control techniques are used to the extent Nitronex deems necessary to support the warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
- Nitronex assumes no liability for applications assistance or customer product design. Customers are responsible for their product and applications using Nitronex semiconductor products or services. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
- Nitronex does not warrant or represent that any license, either express or implied, is granted under any Nitronex patent right, copyright, mask work right, or other Nitronex intellectual property right relating to any combination, machine or process in which Nitronex products or services are used.
- Reproduction of information in Nitronex data sheets is permitted if and only if said reproduction does not alter any of the information and is accompanied by all associated warranties, conditions, limitations and notices. Any alteration of the contained information invalidates all warranties and Nitronex is not responsible or liable for any such statements.
- Nitronex products are not intended or authorized for use in life support systems, including but not limited to surgical implants into the body or any other application intended to support or sustain life. Should Buyer purchase or use Nitronex, LLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold Nitronex, LLC, its officers, employees, subsidiaries, affiliates, distributors, and its successors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, notwithstanding if such claim alleges that Nitronex was negligent regarding the design or manufacture of said products.

Nitronex and the Nitronex logo are registered trademarks of Nitronex, LLC. All other product or service names are the property of their respective owners.

©Nitronex, LLC 2013 All rights reserved.